Leçon 245 : Fonctions holomorphes et méromorphes sur un ouvert de C. Exemples et applications.

1 Régularité des fonctions à variable complexe 2.2

(Amar-Matheron)

1.1 Fonctions holomorphes

- Définition (\mathbb{C} -dérivable + \mathcal{C}^1) + Exemple
- Stabilité de la notion (produit, composition etc.)
- Équivalences de la définition
- Équations de Cauchy-Riemann

1.2 Un exemple important : les fonctions analytiques

- Définition fonction analytique
- Une fonction analytique est infiniment \mathbb{C} -dérivable
- Les fonctions analytiques sont holomorphes + exemple de telles fonctions

2 Formule de Cauchy et conséquences (Tauvel,

Amar-Matheron)

2.1 Formule de Cauchy

- Définition chemin
- Définition intégrale curviligne
- Relation de Chasles
- Définition indice
- Équivalence pour existence de primitive
- Théorème et formule de Cauchy

2.2 Conséquences

- Analyticité des fonctions holomorphes
- Principe du prolongement analytique
- Conséquences : Zéros isolés + intégrité des fonctions holomorphes
- Inégalités de Cauchy + Corollaire (Liouville/D'Alembert Gauss)
- Principe du Maximum

2.3 Convergence de suites

- Théorème de convergence de Weiertsrass + exemple de ζ
- Dérivation sous le signe intégral

2.4 Un exemple pratique d'utilisation de différents résultats

- Définition de l'espace de Bergman du disque unité
- Dév 1 : Espace de Bergman

3 Fonction méromorphes (Tauvel)

- Définition singularité isolée
- Définition pôles + méromorphes
- Prolongement de Γ
- Théorème des résidus
- Dév 2 : Formule des compléments